Extensions 1→N→G→Q→1 with N=C22 and Q=C2xC44

Direct product G=NxQ with N=C22 and Q=C2xC44
dρLabelID
C23xC44352C2^3xC44352,188

Semidirect products G=N:Q with N=C22 and Q=C2xC44
extensionφ:Q→Aut NdρLabelID
C22:1(C2xC44) = D4xC44φ: C2xC44/C44C2 ⊆ Aut C22176C2^2:1(C2xC44)352,153
C22:2(C2xC44) = C22:C4xC22φ: C2xC44/C2xC22C2 ⊆ Aut C22176C2^2:2(C2xC44)352,150

Non-split extensions G=N.Q with N=C22 and Q=C2xC44
extensionφ:Q→Aut NdρLabelID
C22.1(C2xC44) = C11xC8oD4φ: C2xC44/C44C2 ⊆ Aut C221762C2^2.1(C2xC44)352,166
C22.2(C2xC44) = C11xC23:C4φ: C2xC44/C2xC22C2 ⊆ Aut C22884C2^2.2(C2xC44)352,48
C22.3(C2xC44) = C11xC4.D4φ: C2xC44/C2xC22C2 ⊆ Aut C22884C2^2.3(C2xC44)352,49
C22.4(C2xC44) = C11xC4.10D4φ: C2xC44/C2xC22C2 ⊆ Aut C221764C2^2.4(C2xC44)352,50
C22.5(C2xC44) = C11xC42:C2φ: C2xC44/C2xC22C2 ⊆ Aut C22176C2^2.5(C2xC44)352,152
C22.6(C2xC44) = M4(2)xC22φ: C2xC44/C2xC22C2 ⊆ Aut C22176C2^2.6(C2xC44)352,165
C22.7(C2xC44) = C11xC2.C42central extension (φ=1)352C2^2.7(C2xC44)352,44
C22.8(C2xC44) = C11xC8:C4central extension (φ=1)352C2^2.8(C2xC44)352,46
C22.9(C2xC44) = C11xC22:C8central extension (φ=1)176C2^2.9(C2xC44)352,47
C22.10(C2xC44) = C11xC4:C8central extension (φ=1)352C2^2.10(C2xC44)352,54
C22.11(C2xC44) = C4:C4xC22central extension (φ=1)352C2^2.11(C2xC44)352,151

׿
x
:
Z
F
o
wr
Q
<